113 research outputs found

    Modernizing PHCpack through phcpy

    Full text link
    PHCpack is a large software package for solving systems of polynomial equations. The executable phc is menu driven and file oriented. This paper describes the development of phcpy, a Python interface to PHCpack. Instead of navigating through menus, users of phcpy solve systems in the Python shell or via scripts. Persistent objects replace intermediate files.Comment: Part of the Proceedings of the 6th European Conference on Python in Science (EuroSciPy 2013), Pierre de Buyl and Nelle Varoquaux editors, (2014

    Sampling algebraic sets in local intrinsic coordinates

    Full text link
    Numerical data structures for positive dimensional solution sets of polynomial systems are sets of generic points cut out by random planes of complimentary dimension. We may represent the linear spaces defined by those planes either by explicit linear equations or in parametric form. These descriptions are respectively called extrinsic and intrinsic representations. While intrinsic representations lower the cost of the linear algebra operations, we observe worse condition numbers. In this paper we describe the local adaptation of intrinsic coordinates to improve the numerical conditioning of sampling algebraic sets. Local intrinsic coordinates also lead to a better stepsize control. We illustrate our results with Maple experiments and computations with PHCpack on some benchmark polynomial systems.Comment: 13 pages, 2 figures, 2 algorithms, 2 table

    Computing Dynamic Output Feedback Laws

    Full text link
    The pole placement problem asks to find laws to feed the output of a plant governed by a linear system of differential equations back to the input of the plant so that the resulting closed-loop system has a desired set of eigenvalues. Converting this problem into a question of enumerative geometry, efficient numerical homotopy algorithms to solve this problem for general Multi-Input-Multi-Output (MIMO) systems have been proposed recently. While dynamic feedback laws offer a wider range of use, the realization of the output of the numerical homotopies as a machine to control the plant in the time domain has not been addressed before. In this paper we present symbolic-numeric algorithms to turn the solution to the question of enumerative geometry into a useful control feedback machine. We report on numerical experiments with our publicly available software and illustrate its application on various control problems from the literature.Comment: 20 pages, 3 figures; the software described in this paper is publicly available via http://www.math.uic.edu/~jan/download.htm
    • …
    corecore